Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add filters








Language
Year range
1.
Electron. j. biotechnol ; 18(3): 221-230, May 2015. ilus, graf, tab
Article in English | LILACS | ID: lil-750651

ABSTRACT

Background In this study, the detection of nifH and nifD by a polymerase chain reaction assay was used to screen the potential photosynthetic bacteria capable of producing hydrogen from five different environmental sources. Efficiency of photo-hydrogen production is highly dependent on the culture conditions. Initial pH, temperature and illumination intensity were optimized for maximal hydrogen production using response surface methodology with central composite design. Results Rhodobacter sp. KKU-PS1 (GenBank Accession No. KC478552) was isolated from the methane fermentation broth of an UASB reactor. Malic acid was the favored carbon source while Na-glutamate was the best nitrogen source. The optimum conditions for simultaneously maximizing the cumulative hydrogen production (Hmax) and hydrogen production rate (Rm) from malic acid were an initial of pH 7.0, a temperature of 25.6°C, and an illumination intensity of 2500 lx. Hmax and Rm levels of 1264 ml H2/l and 6.8 ml H2/L-h were obtained, respectively. The optimum initial pH and temperature were further used to optimize the illumination intensity for hydrogen production. An illumination intensity of 7500 lx gave the highest values of Hmax (1339 ml H2/l) and Rm (12.0 ml H2/L-h) with a hydrogen yield and substrate conversion efficiency of 3.88 mol H2/mol malate and 64.7%, respectively. Conclusions KKU-PS1 can produce hydrogen from at least 8 types of organic acids. By optimizing pH and temperature, a maximal hydrogen production by this strain was obtained. Additionally, by optimizing the light intensity, Rm was increased by approximately two fold and the lag phase of hydrogen production was shortened.


Subject(s)
Oxidoreductases/metabolism , Rhodobacter/metabolism , Nitrogenase/metabolism , Oxidoreductases/genetics , Temperature , Polymerase Chain Reaction , Rhodobacter/isolation & purification , Bioreactors , Fermentation , Hydrogen/metabolism , Hydrogen-Ion Concentration , Nitrogenase/genetics
2.
Indian J Exp Biol ; 2014 Apr; 52(4): 352-358
Article in English | IMSEAR | ID: sea-150366

ABSTRACT

Effect of salinity (0, 50, 100, 250, 500 and 750 mM NaCl) was observed on some important physiological parameters of nitrogen metabolism such as nitrate uptake, intracellular and extracellular ammonium status and activities of nitrogenase, nitrate reductase, nitrite reductase and glutamine synthetase among Frankia strains differing in their salt tolerance capacity. Nitrogenase activity closely followed the growth pattern with regular decline on NaCl supplementation. All the other enzymes showed optimum activity at 100 mM and declined further. Co-regulation of the nitrate uptake system and sequential enzyme activities plays a crucial role in governing the nitrogen status of strains during salt stress. HsIi10 experiencing minimum decline in enzyme activities and best possible nitrogen regulation under NaCl replete condition showed adequate nutritional management. Among all the strains, HsIi10 proved to be salt tolerant on account of above features while the salt sensitive strain HsIi8 lacked the ability to regulate various steps of nitrogen metabolism during salinity, and thus Frankia strain HsIi10 can potentially serve as a potential biofertilizer in the saline soil.


Subject(s)
Ammonia/metabolism , Frankia/enzymology , Frankia/metabolism , Glutamate-Ammonia Ligase/metabolism , Nitrates/metabolism , Nitrogen/metabolism , Nitrogenase/metabolism , Salinity , Salt Tolerance , Sodium Chloride/metabolism
3.
Indian J Exp Biol ; 2013 May; 51(5): 388-392
Article in English | IMSEAR | ID: sea-147606

ABSTRACT

The effect of UV-C radiation on thylakoid arrangement, chlorophyll-a and carotenoid content and nitrogenase activity of the cyanobacterium Microchaete sp. was studied. Chlorophyll-a and carotenoid content increased gradually up to 48 h of UV-C exposure but declined with longer exposures. Nitrogenase activity decreased moderately with 6 to 12 h exposure and decreased substantially afterwards. When cells exposed to UV-C for 12 to 24 h, grown under fluorescent light for 144 h, nitrogenase activity increased to levels greater than in the control cells. The exposure of UV-C treated cells to fluorescent light, however, did not result in recovery of pigment content. In Microchaete sp. cells treated with UV-C for 144 h, thylakoid membranes became dense, were aggregated into bundles, and were surrounded by spaces devoid of cytoplasm.


Subject(s)
Cyanobacteria/enzymology , Cyanobacteria/metabolism , Cyanobacteria/radiation effects , Microscopy, Electron, Transmission , Nitrogenase/metabolism , Pigments, Biological/metabolism , Thylakoids/metabolism , Ultraviolet Rays
4.
Electron. j. biotechnol ; 7(3): 13-14, Dec. 2004. ilus, tab, graf
Article in English | LILACS | ID: lil-448770

ABSTRACT

The ubiquity of heavy metals in the biosphere results in the introduction of high amounts of toxic metals into the food chain from various sources. In the present study, one of the strongest nitrogen fixing cyanobacterium of the rice fields, Aulosira fertilissima, was subjected to nickel and chromium stress and the ameliorating effect of immobilization was investigated. Cell immobilization could protect the organism's growth against the toxicity of both heavy metals at LC50 as compared to lethal concentrations. The nitrate reductase activity in free cells treated with the metals was substantially inhibited but immobilized cells treated with 0.1 ppm nickel was not affected by the metal treatment. Cell immobilization also resulted in a significant protection against sub-lethal concentration of chromium but to a lesser degree than it did with sub- lethal levels of nickel. Control immobilized cells also had higher Nitrogenase activity than control free cells. Nickel and chromium addition markedly decreased the enzyme activity in free cells but immobilized cells exposed to sublethal concentrations of both metals could overcome this decrease. Glutamine synthetase showed similar response under immobilized conditions compared to free cells with both metals. The addition of algal filtrate in 3:1 ratio further increased the nitrogenase activity compared with immobilized cells treated with sublethal doses of both metals. Immobilization facilitated higher uptake of nickel as compared to chromium. The observations of the present study clearly demonstrate the protective effect of immobilization on Aulosira fertilissima against Nickel and chromium toxicity. Rice field ecosystem thus possess a bidirectional natural metal ameliorating system where Aulosira mats act as a naturally immobilized system and the decay of Aulosira along with other cyanobacteria act as natural chelators protecting the rice plants from deleterious effects of the heavy metals. Most importantly is...


Subject(s)
Cyanobacteria/metabolism , Chromium/metabolism , Nickel/metabolism , Agriculture , Cyanobacteria/enzymology , Water Pollution, Chemical/prevention & control , Chromium/toxicity , Glutamate-Ammonia Ligase/metabolism , Nitrogen Fixation , Nickel/toxicity , Nitrate Reductase/metabolism , Nitrogenase/metabolism
5.
Article in English | IMSEAR | ID: sea-110852

ABSTRACT

It is generally reported that fungi like Pleurotus spp. can fix nitrogen (N2). The way they do it is still not clear. The present study hypothesized that only associations of fungi and diazotrophs can fix N2. This was tested in vitro. Pleurotus ostreatus was inoculated with a bradyrhizobial strain nodulating soybean and P. ostreatus with no inoculation was maintained as a control. At maximum mycelial colonization by the bradyrhizobial strain and biofilm formation, the cultures were subjected to acetylene reduction assay (ARA). Another set of the cultures was evaluated for growth and nitrogen accumulation. Nitrogenase activity was present in the biofilm, but not when the fungus or the bradyrhizobial strain was alone. A significant reduction in mycelial dry weight and a significant increase in nitrogen concentration were observed in the inoculated cultures compared to the controls. The mycelial weight reduction could be attributed to C transfer from the fungus to the bradyrhizobial strain, because of high C cost of biological N2 fixation. This needs further investigations using 14C isotopic tracers. It is clear from the present study that mushrooms alone cannot fix atmospheric N2. But when they are in association with diazotrophs, nitrogenase activity is detected because of the diazotrophic N2 fixation. It is not the fungus that fixes N2 as reported earlier. Effective N2 fixing systems, such as the present one, may be used to increase protein content of mushrooms. Our study has implications for future identification of as yet unidentified N2 systems occurring in the environment.


Subject(s)
Acetylene/chemistry , Agar/chemistry , Agaricales/physiology , Biofilms , Bradyrhizobium/metabolism , Cell Proliferation , Mannitol/chemistry , Nitrogen/chemistry , Nitrogen Fixation , Nitrogenase/metabolism , Soil Microbiology , Temperature
SELECTION OF CITATIONS
SEARCH DETAIL